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IMAGE DISSECTOR APERTURE GEOMETRIES AND SCAN PATTEEWS 

FOR USE I N  STAR TRACKER SYSTEMS 

By Fred H .  Shigemoto and Bruce H.  Dishman 
Ames Research Center 

SUMMARY 

A study was made of d i f f e ren t  aper ture  geometries which could be placed 
a t  t h e  e lec t ron  image plane of an image d issec tor  tube t o  der ive e l e c t r i c a l  
s igna ls  of star pos i t ion  r e l a t l v e  t o  t h e  opt ica l  a x i s .  In comparison t o  t h e  
conventional image d i s sec to r  tube with c i r cu la r  aper ture  and c i r c u l a r  scan, 
it w a s  an t ic ipa ted  t h a t  improved s igna l  l i n e a r i t y ,  reduced cross coupling, 
and a star presence s igna l  could be achieved and t h a t  t he  major complexity of  
deriving pos i t ion  information could be included i n  t h e  r e t i c l e  geometry r a the r  
than i n  the  e l ec t ron ic  c i r c u i t r y .  

The aperture  geometry i n  conjunction with the  l i s s a j o u s  f igu re  formed by 
the  def lec ted  e lec t ron  beam i s  the  basis of pos i t ion  de tec t ion  by means of an 
image d i s sec to r .  To avoid the  expense and delay of manufacturing a s e r i e s  of 
modified tubes,  a simulation of t he  in t e rna l  operat ion of t he  image d i s sec to r  
w a s  devised. This simulator w a s  used t o  t e s t  a number of d i f f e r e n t  combina- 
t i o n s  of aper ture  and scan pa t t e rn .  The t e s t s  val idated t h e  simulation pro- 
cedure and showed the  saw-toothed r e t i c l e  t o  be superior  t o  the  o thers  t e s t e d .  
An ac tua l  tube with a saw-tooth r e t i c l e  was then manufactured and t h e  improved 
performance was as expected. Although the  s ize  of t he  l i n e a r  region i s  
g r e a t l y  improved the re  i s  a l so  an increase i n  dark current  due t o  the l a rge  
aperture  a rea .  I n  t h i s  study, the  aperture  geometry w a s  of primary importance 
f o r  extending the  l i n e a r i t y  of  t he  output signal; t h e  p o s s i b i l i t y  of using a 
complicated scan with a very small aperture  t o  obtain the  t racker  character-  
i s t i c  des i red  was not considered. 

INTRODUCTI9N 

The e s s e n t i a l  elements of any star t racker  system a r e  the  op t i c s ,  modula- 
t i o n  technique, and the  photodetector.  The problem i s  t o  der ive e l e c t r i c a l  
s igna ls  proport ional  t o  t h e  displacement of t h e  image r e l a t i v e  t o  the  o p t i c a l  
axis. These s igna l s  can be generated by various methods which can be cate- 
gorized i n t o  two groups: f irst ,  those systems which mechanically modulate 
t h e  incoming l i g h t  according t o  i t s  displacement r e l a t i v e  t o  the  op t i ca l  ax i s ,  
and second, those systems i n  which the  op t i ca l  image i s  converted t o  an elec-  
t r o n i c  image and modulated e l ec t ron ica l ly .  The disadvantage of t h e  f i rs t  
type i s  t h a t  t h e  l i f e t i m e  and r e l i a b i l i t y  of t h e  system a r e  l imi ted  by the  
mechanically moving p a r t s .  This disadvantage can be l a r g e l y  overcome with 
systems of t h e  second type which use image tubes such as the  vidicon, t he  
image or thicon,  and the  image d i s sec to r .  The primary fea ture  of t he  image 
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dissec tor  tube i s  i ts  a b i l i t y  t o  e l ec t ron ica l ly  de f l ec t  t h e  e lec t ron  image 
over an aper ture  leading t o  the  e lec t ron  mul t ip l ica t ion  sec t ion  of  t h e  tube.  

Various inves t iga tors  have shown t h a t  the  image d i s sec to r  can be used 
e f f ec t ive ly  as a de tec tor  i n  star t racking systems. The tube i n  these  sys- 
tem has the  conventional c i r c u l a r  aper ture .  
invest igat ion of other  aper ture  shapes designed t o  improve image d i s sec to r  
tube performance i n  star t racker  appl ica t ions .  Specif ic  object ives  were t o  
simplify t h e  e lec t ronic  scan c i r cu i t ry ,  and a l s o  t o  obtain a l a r g e r  l i n e a r  
operating region. In order t o  car ry  out t he  inves t iga t ion  most e f f ec t ive ly ,  
an e lec t ronic  simulator of t he  i n t e r n a l  operation of the  image d i s sec to r  w a s  
developed. 

This repor t  i s  concerned with an 

IMAGE DISSECTOR AND ITS SIMULATION 

An image d i s sec to r  i n  a t y p i c a l  operating mode i s  sketched i n  f igure  1. 
An op t i ca l  image on the  photocathode i s  converted t o  an e lec t ron  beam which 
can be def lected and i s  acce lera ted  t o  the  aperture  plane.  
through t h e  aperture  en te r  t he  dynode s t ruc tu re  of t h e  tube and r e s u l t  i n  an 
output s igna l .  
two primary parameters i n  generating star image pos i t ion  information a r e  t h e  
geometry of t he  aperture  and the  l i s s a j o u s  scan pa t t e rn .  When the  scan pat-  
t e r n  i s  superimposed on the  aperture ,  a time sequence of pulses emerges from 
t h e  tube. 
t i o n s  of t he  aperture  through which the  e lec t rons  pass .  
and scan pa t t e rn  the  c h a r a c t e r i s t i c s  of t he  pulse output a r e  changed by t h e  
displacement of t he  centroid of t he  scan pa t t e rn .  
of t h e  op t i ca l  image r e l a t i v e  t o  t h e  o p t i c a l  a x i s  i s  imparted t o  the  output 
s igna l  . 

Electrons passing 

Appendix A descr ibes  i n  d e t a i l  t h e  operation of t he  tube .  Its 

The pos i t ion  and durat ion of each pulse a r e  determined by t h e  sec- 
For a given aper ture  

Thus, pos i t ion  information 

For a de tec tor  such as the  image d i s sec to r  t o  funct ion e f f e c t i v e l y  a s  
p a r t  of an automatic star t r acke r  system, it should have the  following 
cha rac t e r i s t i c s :  

1. Linear i ty  o f  output s igna l  versus e r r o r  displacement from n u l l  

2 .  Two-axis output with minimum cross  coupling between axes 

3. S t a r  presence s igna l  a t  n u l l  

4. Simple e l ec t ron ic  c i r c u i t r y  f o r  sweep generation and s igna l  
proc e s s ing 

There a re  several  d i f f e r e n t  modifications t o  the aper ture  shape and scan 
pa t t e rn  of the  conventional image d i s sec to r  t h a t  could improve i t s  performance 
with respect t o  these c h a r a c t e r i s t i c s .  But t o  t e s t  these  modifications a c t u a l  
tubes containing the  d i f f e r e n t  aper tures  would have t o  be b u i l t  and evaluated. 
However, t o  avoid the delay and expense of manufacturing a s e r i e s  of modified 
tubes a n  e lec t ro-opt ica l  simulation was developed. T h i s  simulation permitted 
var ious concepts t o  be evaluated i n  t h e  labora tory  and t h e  b e s t  fea tures  
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selected f o r  t h e  construction of an a c t u a l  tube. 
of the  aperture  and t h e  l i s s a j o u s  f igure  formed by the def lected e lec t ron  
image Were represented accurately ( f i g .  2 ) .  
beam i s  incident on t h e  image plane i s  represented by a spot on the screen of 
an oscil loscope. 
of the spot with the  v e r t i c a l  and horizontal  oscil loscope def lec t ion  c i r c u i t s .  
A l e n s  focuses the l i s s a j o u s  f igure  a t  a plane where various apertures  of 
d i f f e r e n t  geometry can be placed. 
d e t e c t s  the l i g h t  passing through the aperture .  
p l i e r  i s  then processed and the  posi t ion s igna ls  a r e  obtained. 

In t h e  simulation the plane 

The point a t  which the e lec t ron  

Various l i s s a j o u s  f igures  can then be formed by def lec t ion  

Beyond the aperture  a photomultiplier 
The output of the photomulti- 

The v a l i d i t y  of the  simulation w a s  v e r i f i e d  by comparing the simulation 
r e s u l t s  obtained with a c i r c u l a r  aperture and c i r c u l a r  scan pa t te rn  with 
r e s u l t s  obtained with an a c t u a l  tube which had a c i r c u l a r  aperture and used a 
c i r c u l a r  scan. In each case, the aperture  diameter w a s  the  same as t h a t  of 
the l i s s a j o u s  f igure .  
which w a s  obtained from the  simulation, the  abscissa  i s  the  r a t i o  of image 
displacement on the r e t i c l e  t o  r e t i c l e  s i z e .  
simulation were p lo t ted  i n  t h i s  manner.) The bas ic  shape of the curves of 
f igures  3 and 4 i s  ident ica l  and there  is no ser ious departure between the 
two. 

The r e s u l t s  a r e  shown i n  f igures  3 and 4. In f igure  3, 

(All subsequent data  from the  

SIMULATOR InrVESTIGATIONS OF APEXTW AND SCAN COMBINATIONS 

Apertures Ut i l iz ing  a Circular Scan 

I n i t i a l  invest igat ions u t i l i z e d  a c i r c u l a r  r e t i c l e  and scan pa t te rn  as 
shown i n  sketch ( a l ) .  The length 2 i s  the portion of the  scan pa t te rn  which 
passes through the  r e t i c l e .  A s  i s  shown, the r e t i c l e  and scan p a t t e r n  had the  
same diameter. Sketch (a2) shows the var ia t ion  of 2 with E .  The t r a n s i -  
t i o n  from -6 t o  +E 
negative e r r o r  s igna l  when phase demodulated against  t h e  sweep s igna l .  The 
derived e r r o r  c h a r a c t e r i s t i c  w i l l  then be o f  the  form shown i n  sketch (a3) .  
Note t h a t  t h i s  e r r o r  s igna l  i s  a discontinous function and hence has no l i n e a r  
region but r a t h e r  a s tep  a t  n u l l .  

a t  n u l l  w i l l  be detected as a change from pos i t ive  t o  

Actually, the f i n i t e  diameter of 
t h e  star image on the photocathode w i l l  
r e s u l t  i n  a small l i n e a r  region as 
shown i n  f igure  3, which i s  a p lo t  of 

l a t i o n  apparatus.  Figure 4 i s  a p l o t  
of a similar e r r o r  charac te r i s t ic  
obtained with an a c t u a l  FW-129 image 

r r  dissec tor  tube.  A s  has a l ready been 

I = 2rB 

cos B = 5 
/ = 2r !5! 2r 

Scan laboratory data  obtained with the simu- 

Reticle --*- 
I 

2r noted, t h i s  curve v e r i f i e d  the authen- 
2r -2r t i c i t y  of the simulation procedure and 

- r r  i l l u s t r a t e d  the  undesirably small 
(3) l i n e a r  range and high cross coupling of 

A 
- 2 r  I 

( 2 )  

Sketch (a)  

3 
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t h e  basic  tube.  
can be seen t h a t  there  i s  no star presence s igna l  a t  n u l l .  

From an inspection of the  aperture  and scan combination it 

From a consideration of  the  c i r c u l a r  aper ture  w i t h  t h e  c i r c u l a r  l i s s a j o u s  
f igure,  two d i s t i n c t  types of r e t i c l e s  evolved. 
l i n e a r  region as well as a s igna l  indicat ing n u l l  can be obtained by i n t e r -  
rupting the  e lec t ron  image beam as it i s  scanned around t h e  aperture .  
types of r e t i c l e s  a r e  shown i n  sketch ( b ) .  

With these,  an extended 

The two 

Circular scan 

Transparent 

Opaque 

Sketch (b )  

In  sketch ( b l )  t h e  centroid of each t ransmit t ing sec tor  i s  near the 
periphery of the r e t i c l e .  For a given displacement, the  amount of energy 
transmitted through the  r e t i c l e  i s  grea te r  on t h a t  s ide of the c i r c u l a r  scan 
f a r t h e s t  from the r e t i c l e  center as long as the  scan l i n e s  l i e  e n t i r e l y  within 
the  r e t i c l e  a rea .  When the scan i s  p a r t i a l l y  on the  r e t i c l e ,  the  energy 
transmitted i s  l a r g e r  on the s ide of the scan nearest  the  r e t i c l e  center .  
Thus, with such a r e t i c l e  an undesirable 180° phase r e v e r s a l  can occur. In  
sketch (b2) the  r e t i c l e  has i t s  l a r g e s t  opening a t  t h e  center so the  t rans-  
mitted s ignal  i s  always grea te r  on t h a t  s ide of the  scan nearest  the r e t i c l e  
center .  Because of the  s igna l  phase reversa l  c h a r a c t e r i s t i c s  of r e t i c l e s  of 
t h e  type i n  sketch ( b l ) ,  the  laboratory invest igat ion was confined t o  the  type 
shown i n  sketch (b2). Generally, it appears t h a t  whenever a pos i t ion  s igna l  
is  t o  be determined according t o  pulse pos i t ion  using a c i r c u l a r  scan, the  
aperture should have i t s  l a r g e s t  opening a t  the center  or  n u l l  pos i t ion .  
c h a r a c t e r i s t i c s  of a star r e t i c l e  with twice as many points ,  as shown i n  
sketch (b2), a r e  shown i n  f igures  5 and 6. 
been extended appreciably compared t o  f igure  3 .  
be obtained from t h i s  aper ture  by noting t h a t  a continuous s e r i e s  of pulses 
uniformly spaced i n  time w i l l  e x i s t  a t  n u l l .  

The 

Note t h a t  the  l i n e a r  range has 
A n u l l  indicat ion s igna l  can 

Double Line Scan 

A two-axis e r r o r  c h a r a c t e r i s t i c  with an improved l i n e a r  region can be 
achieved i f  a double l i n e  scan i s  used with an aperture  with a s inusoidal  con- 
tour ,  as shown i n  sketch ( c ) .  
horizontal  def lect ion c o i l  with a square current  waveform and t h e  v e r t i c a l  
def lect ion c o i l  with a s inusoidal  current  of frequency twice t h a t  of t h e  
square wave. 

T h i s  type of scan i s  generated by dr iving the  

4 



Ho r i tontal  image 

I 

Electron beam path 

Reticle contour 

I 
Sketch ( e )  

Ver t ica l  e r r o r  displacement of the image i s  determined by the  tube output 
pulse pos i t ion  with respect t o  the  v e r t i c a l  sweep signal;  horizontal  e r r o r  
displacement is  determined by t h e  difference between output pulse width 
occurring during each v e r t i c a l  sweep. 
combination as determined with the s i m u l a t i o n  apparatus are shown i n  f igures  7 
and 8. 

The r e s u l t s  of t h i s  scan and aperture  

Edge Tracking Scan 

Optical  image posi t ion information can be obtained from an image d issec tor  
by servoing the electron image t o  follow e i t h e r  the  upper or lower edge of the 
aper ture .  Such a system, ca l led  edge tracking, operates i n  t h e  following 
manner. A t r iangular  sweep s igna l  dr ives  the horizontal  def lec t ion  c o i l ,  and 
the  v e r t i c a l  def lec t ion  c o i l  i s  driven by the output of the tube.  Thus, when 
t h e  e lec t ron  image i s  incident on the aperture,  a tube output s igna l  w i l l  
d r ive  t h e  image t o  t h e  edge of the  aperture .  The output s igna l ,  of course, 
disappears as soon as the  image f a i l s  t o  pass through the aperture .  The 
r e s u l t  i s  t h a t  the image stops on the  edge with a s u f f i c i e n t  portion of the  
e lec t ron  beam passing through t o  maintain a v e r t i c a l  def lec t ion  s igna l  t o  keep 
t h e  image on the  edge. The current through the  v e r t i c a l  def lec t ion  c o i l  i s  
then proportional t o  the  displacement of the image on the  photocathode i n  the 
v e r t i c a l  d i r e c t i o n .  Horizontal posi t ion information i s  obtained when the 
phase of t h e  output s igna l  i s  measured with respect t o  the scan s igna l .  The 
simulator invest igat ion u t i l i z e d  a c i rcu lar  aper ture  and a t r i a n g u l a r  wave 
form f o r  the horizontal  scan. Vert ical  p o l a r i t y  information was obtained by 
t racking both edges of the aperture  on a l t e r n a t e  half  cycles of the  horizontal  
d e f l e c t i o n  s igna l .  The r e s u l t s  obtained from the  simulation a r e  shown i n  f i g -  
ures 9 and 10. It w i l l  be noted t h a t  a subs tan t ia l  l i n e a r  region i s  present .  

Saw-Toothed Aperture 

From three  types of scan pa t te rns  and r e t i c l e  combinations considered i n  
t h e  preceding sect ions,  a combination was simulated t h a t  would be p a r t i c u l a r l y  
compatible with spacecraft  mission requirements. The system, synthesized, 
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employs a saw-toothed aperture  ( f i g .  11) and provides two-axis pos i t ion  infor-  
mation. It employs a simple, s ing le  hor izonta l  l i n e  scan pa t t e rn  t h a t  
involves a minimum of  e l ec t ron ic  c i r c u i t  complexity. 

The use of  a s ingle  hor izonta l  ax is  def lec t ion  s igna l  requi res  a r e t i c l e  
contour t h a t  i s  unsymmetrical about i t s  hor izonta l  a x i s  i n  order t o  determine 
t h e  v e r t i c a l  d i r ec t ion  of image displacement. The saw-toothed design i n  
f igure  11 s a t i s f i e s  t h i s  condition. To understand the operation of t h i s  
r e t i c l e ,  f i r s t  consider v e r t i c a l  image displacements. A s  t he  e l ec t ron  image 
i s  def lected across the  triangular-shaped openings by the  hor izonta l  scan, a 
s e r i e s  of pulses w i l l  appear across  the  anode load r e s i s t o r .  The pulse f r e -  
quency i s  the  in te l l igence  t h a t  ind ica tes  t he  v e r t i c a l  d i r ec t ion  of t he  image 
displacement. For t h i s  reason, the  number of openings i n  the  r e t i c l e  i s  
g rea t e r  below the  n u l l  a x i s  than above. 
from the n u l l  axis, the width of each pulse increases ,  though the  spacing and 
number of pulses remain t h e  same. 
pulse t r a i n  shows t h a t  a harmonic of t h e  scan frequency r e l a t ed  t o  t h e  number 
of triangular-shaped openings i s  present ,  which increases i n  amplitude with 
t h e  pulse width. The output s igna l  from the  tube i s  fed t o  separate narrow- 
band f i l t e r s  which a re  tuned t o  frequencies corresponding t o  t he  upper and 
lower sect ions of t he  r e t i c l e .  The d i f fe rence  i n  the  f i l t e r  outputs i s  then 
proportional t o  v e r t i c a l  image displacement. A t  nu l l ,  four  pulses ind ica te  
star presence; t he  small diamond-shaped openings on the  r e t i c l e  a r e  f o r  t h i s  
purpose and a l s o  t o  provide hor izonta l  information a t  v e r t i c a l  n u l l .  Image 
displacement i n  the  hor izonta l  d i r ec t ion  i s  determined by the  pos i t ion  of the  
pulse t r a i n  with respect  t o  t h e  sweep s igna l .  This c h a r a c t e r i s t i c  i s  derived 
by f i l t e r i n g  the  fundamental or sweep frequency from the tube output and phase 
demodulating t h i s  with respect  t o  t h e  sweep s igna l .  

For image displacement fu r the r  away 

A Fourier ana lys i s  (appendix B) of t he  

The two-axis e r r o r  c h a r a c t e r i s t i c s  derived by placing the  saw-toothed 
r e t i c l e  i n  the  simulation apparatus a r e  shown i n  f igures  12,  13,  and 14. 
e r r o r  s ignals  i n  both the  hor izonta l  and v e r t i c a l  axes have a s u b s t a n t i a l l y  
l a r g e r  l i n e a r  region than t h a t  obtained with any of t he  previous schemes. 
Also,  the cross coupling i s  less than t h a t  f o r  the  previous schemes. A star 
presence s igna l  a t  n u l l  i s  provided and t h e  e l ec t ron ic  sweep c i r c u i t r y  i s  very 
simple. Thus a l l  four  of the  c r i t e r i a  s e t  f o r t h  f o r  an improved star t racker  
a r e  s a t i s f i e d  t o  a high degree.  Although a l l  of the  r e t i c l e  shapes previously 
considered were capable of giving the  des i red  cha rac t e r i s t i c s  t o  some degree, 
t he  saw-toothed r e t i c l e  appeared t o  5est fu l f i l l  t he  a i m s  o f  t h i s  invest iga-  
t i o n .  A saw-toothed r e t i c l e  was therefore  chosen t o  be incorporated i n  an 
a c t u a l  tube.  

The 

IMAGE DISSECTOR WITH MODIFIED APERTURE 

I n  order t o  v e r i f y  the  conclusions of t he  s imulator  inves t iga t ions ,  a 
saw-toothed r e t i c l e  w a s  incorporated i n t o  an In t e rna t iona l  Telephone and 
Telegraph tube type FW-129. 
e l e c t r o s t a t i c  focus, image d i s sec to r  tube with an S-11 photocathode Surface 
1 inch i n  diameter. 
which the tube i s  used t o  determine t h e  f e a s i b i l i t y  of employing it as a 

The ~w-129 i s  an end window, magnetic def lec t ion ,  

Figures 15 through 18 present  t h e  r e s u l t s  of tes ts  i n  
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detec tor  i n  point source tracking appl icat ions.  
e r r o r  s lgna l  and the s igna l  cross coupled into the horizontal  channel f o r  a 
v e r t i c a l  displacement of a 1-mil-diameter l i g h t  spot on the photocathode. 
t o t a l  l i n e a r  region of the v e r t i c a l  charac te r i s t ic  i s  0.22 inch on the  photo- 
cathode, which i s  22 percent of i t s  diameler. 
horizontal  channel i s  1 percent.  
obtained with t h e  unmodified FW-1'29 with a 0.07-inch-diameter c i r c u l a r  aper- 
t u r e  ( f i g .  4), it i s  observed t h a t  the width of the l i n e a r  region i s  substan- 
t i a l l y  increased. 
displacement on the photocathode, which corresponds t o  0.8 percent of the 
photocathode diameter. 

Figure 15 shows the  v e r t i c a l  

The 

The cross coupling i n t o  the 
When these r e s u l t s  are compared with r e s u l t s  

In  f igure  4, the  t o t a l  l i n e a r  region i s  0.008 inch 

Figures 16 through 18 show the charac te r i s t ics  of the tube f o r  a horizon- 
Figures 16 and 17 t a l  displacement of a 1 - m i l  l i g h t  spot on the photocathode. 

show the  horizontal  c h a r a c t e r i s t i c s  f o r  the  high and low frequency s ides  of 
v e r t i c a l  n u l l .  These curves have the same slope, but one i s  s l i g h t l y  wider 
than the  other  because of the  difference i n  r e t i c l e  width. The t o t a l  l i n e a r  
region of these  c h a r a c t e r i s t i c s  corresponds t o  0.17 inch on the photocathode 
or 17  percent of i t s  diameter. 
the  tube a t  v e r t i c a l  n u l l  f o r  a displacement i n  the horizontal  d i r e c t i o n .  It 
w i l l  be observed t h a t  t h i s  c h a r a c t e r i s t i c  i s  l e s s  i n  magnitude than t h e  other 
two hor izonta l  c h a r a c t e r i s t i c s .  This condition i s  due t o  t h e  decrease i n  
width of the  t r iangular  sector  as the n u l l  point i s  approached. 

Figure 18 shows the  e r r o r  c h a r a c t e r i s t i c  of 

The e r r o r  c h a r a c t e r i s t i c s  f o r  t h e  modified FW-129 exhib i t  a subs tan t ia l  
l i n e a r  region and a cross coupling t h a t  i s  qui te  small. This indicates  t h a t  
the  tube could be e f f e c t i v e l y  used i n  tracking appl icat ions.  

Photometric t e s t s  of the  tube showed t h a t  it had the same luminous sensi- 
t i v i t y  as the  standard tube but higher dark current versus dynode supply vol t -  
age c h a r a c t e r i s t i c .  The dark current a t  1700 v o l t s  dynode supply f o r  the  
standard FW-U.9 ( c i r c u l a r  aper ture  0.07-inch diameter) i s  0.01 microampere, 
while for the  modified tube the  dark current i s  0 .1  microampere. The dark 
current  c h a r a c t e r i s t i c s  f o r  the  modified tube a r e  shown i n  f igure  19. The 
reason f o r  the  increased dark current i s  believed t o  be the  increased r e t i c l e  
aper ture  s i z e  (0.3-inch width and 0.25-inch height)  and t h e  correspondingly 
increased e f f e c t i v e  cathode a rea .  

A Two Reticle  System 

From t h e  study undertaken, the idea of put t ing a r e t i c l e  on the photo- 
cathode t o  obtain a t r u e  n u l l  became apparent f o r  reasons t o  be discussed. 
inherent problem of t h e  image d issec tor  tube i s  t h a t  i t s  def lec t ion  system i s  
suscept ible  t o  l o c a l  e l e c t r o s t a t i c  and magnetic f i e l d s ,  which could upset the  
e l e c t r i c a l  n u l l  pos i t ion .  A common method of avoiding t h i s  e f f e c t  i s  t o  use 
sh ie ld ing .  Another method of overcoming t h i s  problem might be by the addi t ion 
of a second r e t i c l e  placed on the  photocathode. When considering the  o r i g i n  
from which pos i t ion  information is  t o  be derived, two zeros must be taken in to  
account, t h e  o p t i c a l  and e l e c t r i c a l .  The o p t i c a l  zero i s  f ixed by t h e  opt ics  
of t h e  system. The e l e c t r i c a l  zero i s  determined by the e lec t ronic  beam 
pos i t ion  a t  o p t i c a l  zero and with no current through the  def lec t ion  co i l s ;  but 

An 
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it i s  subject  t o  ex terna l  f i e l d s  when not properly shielded.  It should be 
possible  t o  place a r e t i c l e  on the  photocathode t o  code a pa t t e rn  on the  
e lec t ron  beam. By comparing t h i s  with the  r e t i c l e  a t  the  e l ec t ron  image plane 
it should be possible  t o  de tec t  t he  op t i ca l  zero i n  t h e  presence of a d is turb-  
ing f i e l d .  
magnitude o f  t he  f i e l d .  

Such an arrangement might a l s o  be u t i l i z e d  t o  determine t h e  

CONCLUSIONS 

The i n t e r n a l  workings of an image d i s sec to r  were simulated and var ious 
combinations of aper ture  and scan pa t te rn  were invest igated.  
combinations of aper ture  geometry and scan pa t t e rn  considered, t he  combination 
of a saw-tooth-shaped aperture  and s t r a igh t  l i n e  scan was found t o  b e s t  
s a t i s f y  the  cha rac t e r i s t i c s  des i red .  The saw-toothed aperture  was b u i l t  i n  
an  a c t u a l  tube and performed as expected. From a comparison of i t s  s igna l  
c h a r a c t e r i s t i c s  with t h a t  of a c i rcu lar  aper ture  and c i r c u l a r  scan the  saw- 
toothed aperture  and s ingle  l i n e  scan showed a marked improvement i n  l i n e a r i t y  
with l i t t l e  cross  coupling. Not a l l  conceivable combinations of  aper ture  
geometry and scan pa t t e rn  were examined; however, it can be s t a t e d  t h a t  from 
these s tud ies  it was found t h a t  t h e  aperture  of the  image d i s sec to r  can be 
e f f e c t i v e l y  a l t e r e d  t o  include much of  the  complexity required i n  generating 
pos i t ion  s igna ls  and t o  provide desired s igna l  cha rac t e r i s t i c s .  

Among a l l  other  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif . ,  June 17, 1965 
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APPENDIX A 

DISCUSSION OF IMAGE DISSECTOR TUBE OPERATION 

The image d issec tor  i s  a photoelectr ic  tube which has the capabi l i ty  of 
examining an o p t i c a l  image e lec t ronica l ly .  
t he  photocathode, def lec t ion  section, e lectron image plane, and the  e lec t ron  
mul t ip l ica t ion  sect ion (see f i g .  2 0 )  - 
photocathode causes e lec t rons  t o  be emitted from the  photoemissive inner 
surface of t he  photocathode. 
por t iona l  t o  the  l i g h t  energy incident on the photocathode. The e lec t ron  
image is  defined as the  e lec t ron  d i s t r ibu t ion  i n  a two-dimensional plane 
corresponding t o  t h e  d i s t r ibu t ion  of l i g h t  energy of the  op t i ca l  image. This 
e lec t ron  image i s  accelerated t o  the  electron image plane where it comes t o  a 
focus.  
t he  e lec t ron  image r e l a t i v e  t o  the tube axis i s  the  same as t h a t  f o r  the 
o p t i c a l  image. 
t o  the  e lec t ron  mult ipl icat ion sect ion of the tube.  
en ter  t h i s  aper ture  result i n  a tube output.  With a su i tab le  def lec t ion  
system, it i s  possible t o  scan the electron image across  the aperture  so t h a t  
an amplitude versus t i m e  s igna l  can be derived corresponding t o  each point on 
the  image. 

The major p a r t s  of t he  tube are 

I n  operation, an op t i ca l  image on the  

The d i s t r ibu t ion  of e lectrons i s  d i r e c t l y  pro- 

In  the absence of a magnetic o r  e l e c t r o s t a t i c  f i e l d ,  t he  pos i t ion  of  

Placed a t  the  e lec t ron  image plane i s  an aperture  which leads  
Only those e lec t rons  t h a t  

In  the  tex t  of t h i s  repor t  a point source (star image) i s  considered for 
deriving pos i t ion  information. Figure 2 shows the  equipment used t o  simulate 
the  in t e rna l  workings of an image d issec tor  f o r  a point  source image. The 
def lected e lec t ron  image i s  simulated by def lec t ing  the  spot on an  osc i l l o -  
scope. The l i s s a j o u s  f igure  formed by  the  v e r t i c a l  and horizontal  def lec t ion  
s igna ls  can be moved by the  oscil loscope posi t ion controls  t o  simulate the  
displacement of t he  o p t i c a l  image. Situated a small dis tance away from the  
oscil loscope i s  a l ens  which focuses the  oscil loscope d isp lay  onto a r e t i c l e  
p l a t e  (e lec t ron  image p lane) .  Light passing through the  r e t i c l e  i s  col lected 
by a photomultiplier (e lectron mult ipl icat ion sect ion)  . 
considered were tested on t h i s  simulation equipment. 

A l l  r e t i c l e  shapes 
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APPENDIX B 

. 

ANALYSIS OF TKFl OUTPUT OF AN IMAGE DISSECTOR TUBE 

MODIFIED W I T H  A SAW-TOOTHED RETICLE 

Displacement s igna ls  a r e  derived from the  saw-toothed r e t i c l e  i n  con- 
junction with a l i n e a r  saw-toothed def lec t ion  waveform. In  sketches (d l )  and 
(d2) are  shown the  output pulse t r a i n s  f o r  an image displaced above and below 
the  horizontal  a x i s ,  respect ively.  A Fourier analysis  of these waveforms 
shows what parameters the  horizontal  and v e r t i c a l  e r r o r  s igna ls  depend upon. 

T period 

Sketch (d )  

X t i m e  f o r  s tar t  of sweep t o  midpoint between pulses; var ies  d i r e c t l y  as 
t h e  image horizontal  displacement 

Y t i m e  duration of pulse; var ies  d i r e c t l y  as the image v e r t i c a l  displace- 
displacement 

2k t i m e  between pulses 

The above waveforms can be wr i t ten  i n  t h e  following form: 

A, s i n  nut + 
n= 1 

E = A o +  

n= 1 
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The hor izonta l  e r r o r  s igna l  i s  proportional t o  (T/2) - x 
from the  fundamental component of the s ignal  f o r  t he  two- and five-pulse wave- 
forms by measuring the  phase r e l a t i v e  t o  the t e r m  s i n  u t .  In  prac t ice ,  t h i s  
involves a phase de tec tor  i n  t h e  horizontal  de tec t ion  c i r c u i t .  

and is  determined 

The fundamental components of s igna l  for t h e  waveforms shown i n  
sketches ( d l )  and (a) are:  

4 cos wkl s i n  3 s i n  w ( t  - x) 
2 

5 pulse} E l  = (cos 4wk2 + cos 2wk2 + sin w ( t  - x) 

It w i l l  be noted t h a t  t he  t i m e  phase of the  two fundamental s igna ls  va r i e s  
d i r e c t l y  as the  hor izonta l  displacement. It i s  e s s e n t i a l  t h a t  t he  r m s  value 
of E l  not be zero i n  order t o  generate the hor izonta l  displacement s igna l .  
The two parameters k and y could cause the fundamental s igna l  t o  go t o  zero; 
k i s  a funct ion of pulse separat ion and can be f ixed  with t h e  sweep amplitude. 
Thus the  e f f e c t  of k can be control led.  (For t h e  labora tory  inves t iga t ion ,  
kl = T/8 and k2 = T/20.) A s  the  v e r t i c a l  displacement, which i s  proport ional  
t o  y ,  approaches zero, t h e  fundamental f o r  both waveforms approaches zero.  
To keep E l  from vanishing a t  t h e  v e r t i c a l  n u l l  axis and t o  generate a s t a r  
presence s igna l ,  small openings a r e  placed on the  r e t i c l e  a t  t he  v e r t i c a l  n u l l  
a x i s .  

!The v e r t i c a l  e r r o r  s igna l  i s  determined by f i l t e r i n g  the  fourth and 
t en th  harmonic from t h e  tube output.  It can be shown t h a t  when an image i s  
above or below the  v e r t i c a l  n u l l  ax i s ,  the  four th  o r  t en th  harmonic, respec- 
t i v e l y ,  w i l l  be present ,  bu t  not both simultaneously. The magnitude of each 
harmonic as a funct ion of v e r t i c a l  displacement above and below the  axis i s  
the  same. 
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Figure 19.- Dark current charac te r i s t ic  for modified FW-129 image 
d issec tor .  
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